Аннотация:
In this paper we give an introduction to the notion of a normally hyperbolic invariant manifold (NHIM) and its role in chemical reaction dynamics. We do this by considering simple examples for one-, two-, and three-degree-of-freedom systems where explicit calculations can be carried out for all of the relevant geometrical structures and their properties can be explicitly understood. We specifically emphasize the notion of a NHIM as a “phase space concept”. In particular, we make the observation that the (phase space) NHIM plays the role of “carrying” the (configuration space) properties of a saddle point of the potential energy surface into phase space.
We also consider an explicit example of a 2-degree-of-freedom system where a “global” dividing surface can be constructed using two index one saddles and one index two saddle. Such a dividing surface has arisen in several recent applications and, therefore, such a construction may be of wider interest.
Ключевые слова:normally hyperbolic invariant manifolds, chemical reaction dynamics, dividing surface, phase space transport, index $k$ saddle points.
Поступила в редакцию: 12.10.2016 Принята в печать: 04.11.2016