RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 6, страницы 682–696 (Mi rcd218)

Эта публикация цитируется в 10 статьях

Poisson Brackets of Mappings Obtained as $(q, -p)$ Reductions of Lattice Equations

Dinh T. Trana, Peter H. van der Kampb, G. R. W. Quispelb

a School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia
b Department of Mathematics and Statistics, La Trobe University, Bundoora VIC 3086, Australia

Аннотация: In this paper, we present Poisson brackets of certain classes of mappings obtained as general periodic reductions of integrable lattice equations. The Poisson brackets are derived from a Lagrangian, using the so-called Ostrogradsky transformation. The $(q, -p)$ reductions are $(p+q)$-dimensional maps and explicit Poisson brackets for such reductions of the discrete KdV equation, the discrete Lotka–Volterra equation, and the discrete Liouville equation are included. Lax representations of these equations can be used to construct sufficiently many integrals for the reductions. As examples we show that the $(3, -2)$ reductions of the integrable partial difference equations are Liouville integrable in their own right.

Ключевые слова: lattice equation, periodic reduction, Lagrangian, Poisson bracket.

MSC: 39A14, 39A20, 70H15, 70H06

Поступила в редакцию: 19.08.2016
Принята в печать: 03.11.2016

Язык публикации: английский

DOI: 10.1134/S1560354716060083



Реферативные базы данных:


© МИАН, 2024