RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 6, страницы 697–706 (Mi rcd219)

Эта публикация цитируется в 5 статьях

Knauf’s Degree and Monodromy in Planar Potential Scattering

Nikolay Martynchuk, Holger Waalkens

Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

Аннотация: We consider Hamiltonian systems on $(T^{*}\mathbb R^2, dq \wedge dp)$ defined by a Hamiltonian function $H$ of the “classical” form $H = p^2/2 + V(q)$. A reasonable decay assumption $V(q) \to 0, \, \|q\| \to \infty,$ allows one to compare a given distribution of initial conditions at $t = - \infty$ with their final distribution at $t = + \infty$. To describe this Knauf introduced a topological invariant $\text{deg}(E)$, which, for a nontrapping energy $E>0$, is given by the degree of the scattering map. For rotationally symmetric potentials $V(q) = W(\|q\|)$, scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf's degree $\text{deg}(E)$ and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree $\text{deg}(E)$, which appears when the nontrapping energy $E$ goes from low to high values.

Ключевые слова: Hamiltonian system, Liouville integrability, nontrapping degree of scattering, scattering monodromy.

MSC: 37J35, 70F99, 70H05

Поступила в редакцию: 22.08.2016
Принята в печать: 17.11.2016

Язык публикации: английский

DOI: 10.1134/S1560354716060095



Реферативные базы данных:


© МИАН, 2024