RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 6, страницы 759–774 (Mi rcd222)

Эта публикация цитируется в 15 статьях

Integrability and Nonintegrability of Sub-Riemannian Geodesic Flows on Carnot Groups

Ivan A. Bizyaeva, Alexey V. Borisovba, Alexander A. Kilina, Ivan S. Mamaevc

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow, 115409 Russia
c Izhevsk State Technical University, ul. Studencheskaya 7, Izhevsk, 426069 Russia

Аннотация: This paper is concerned with two systems from sub-Riemannian geometry. One of them is defined by a Carnot group with three generatrices and growth vector $(3,6,14)$, the other is defined by two generatrices and growth vector $(2,3,5,8)$. Using a Poincaré map, the nonintegrability of the above systems in the general case is shown. In addition, particular cases are presented in which there exist additional first integrals.

Ключевые слова: sub-Riemannian geometry, Carnot group, Poincaré map, first integrals.

MSC: 53C17, 37C10

Поступила в редакцию: 16.10.2016
Принята в печать: 20.11.2016

Язык публикации: английский

DOI: 10.1134/S1560354716060125



Реферативные базы данных:


© МИАН, 2024