RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 7-8, страницы 862–873 (Mi rcd232)

Эта публикация цитируется в 1 статье

Dynamical Systems on the Liouville Plane and the Related Strictly Contact Systems

Stavros Anastassiou

Center of Research and Applications of Nonlinear Systems (CRANS) University of Patras, Department of Mathematics, GR-26500 Rion, Greece

Аннотация: We study vector fields of the plane preserving the Liouville form. We present their local models up to the natural equivalence relation and describe local bifurcations of low codimension. To achieve that, a classification of univariate functions is given according to a relation stricter than contact equivalence. In addition, we discuss their relation with strictly contact vector fields in dimension three. Analogous results for diffeomorphisms are also given.

Ключевые слова: systems preserving the Liouville form, strictly contact systems, classification, bifurcations.

MSC: 37C15, 37J10, 58K45, 53D10

Поступила в редакцию: 14.08.2016
Принята в печать: 22.11.2016

Язык публикации: английский

DOI: 10.1134/S1560354716070091



Реферативные базы данных:


© МИАН, 2024