RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 7-8, страницы 885–901 (Mi rcd234)

Эта публикация цитируется в 12 статьях

Regular and Chaotic Dynamics in the Rubber Model of a Chaplygin Top

Alexey V. Borisova, Alexey O. Kazakovb, Elena N. Pivovarovaa

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b National Research University Higher School of Economics, ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155 Russia

Аннотация: This paper is concerned with the rolling motion of a dynamically asymmetric unbalanced ball (Chaplygin top) in a gravitational field on a plane under the assumption that there is no slipping and spinning at the point of contact. We give a description of strange attractors existing in the system and discuss in detail the scenario of how one of them arises via a sequence of period-doubling bifurcations. In addition, we analyze the dynamics of the system in absolute space and show that in the presence of strange attractors in the system the behavior of the point of contact considerably depends on the characteristics of the attractor and can be both chaotic and nearly quasi-periodic.

Ключевые слова: Chaplygin top, nonholonomic constraint, rubber model, strange attractor, bifurcation, trajectory of the point of contact.

MSC: 37J60, 37G35, 70E18

Поступила в редакцию: 21.11.2016
Принята в печать: 06.12.2016

Язык публикации: английский

DOI: 10.1134/S156035471607011X



Реферативные базы данных:


© МИАН, 2024