RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 2, страницы 136–147 (Mi rcd247)

Classical Perturbation Theory and Resonances in Some Rigid Body Systems

Ivan Yu. Polekhin

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Аннотация: We consider the system of a rigid body in a weak gravitational field on the zero level set of the area integral and study its Poincaré sets in integrable and nonintegrable cases. For the integrable cases of Kovalevskaya and Goryachev–Chaplygin we investigate the structure of the Poincaré sets analytically and for nonintegrable cases we study these sets by means of symbolic calculations. Based on these results, we also prove the existence of periodic solutions in the perturbed nonintegrable system. The Chaplygin integrable case of Kirchhoff's equations is also briefly considered, for which it is shown that its Poincaré sets are similar to the ones of the Kovalevskaya case.

Ключевые слова: Poincaré method, Poincaré sets, resonances, periodic solutions, small divisors, rigid body, Kirchhoff's equations.

MSC: 70E17, 70E20, 70E40

Поступила в редакцию: 20.12.2016
Принята в печать: 15.01.2017

Язык публикации: английский

DOI: 10.1134/S1560354717020034



Реферативные базы данных:


© МИАН, 2024