RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 3, страницы 197–209 (Mi rcd251)

Эта публикация цитируется в 2 статьях

Nonuniform Exponential Dichotomies and Lyapunov Functions

Luis Barreiraa, Davor Dragičevićb, Claudia Vallsa

a Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
b School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia

Аннотация: For the nonautonomous dynamics defined by a sequence of bounded linear operators acting on an arbitrary Hilbert space, we obtain a characterization of the notion of a nonuniform exponential dichotomy in terms of quadratic Lyapunov sequences. We emphasize that, in sharp contrast with previous results, we consider the general case of possibly noninvertible linear operators, thus requiring only the invertibility along the unstable direction. As an application, we give a simple proof of the robustness of a nonuniform exponential dichotomy under sufficiently small linear perturbations.

Ключевые слова: nonuniform exponential dichotomies, Lyapunov functions.

MSC: 37D99

Поступила в редакцию: 10.12.2016
Принята в печать: 30.03.2017

Язык публикации: английский

DOI: 10.1134/S1560354717030017



Реферативные базы данных:


© МИАН, 2024