RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 3, страницы 298–317 (Mi rcd258)

Эта публикация цитируется в 11 статьях

The Rolling Motion of a Truncated Ball Without Slipping and Spinning on a Plane

Alexander A. Kilinab, Elena N. Pivovarovab

a Institute of Mathematics and Mechanics of the Ural Branch of RAS, ul. S. Kovalevskoi 16, Ekaterinburg, 620990 Russia
b Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia

Аннотация: This paper is concerned with the dynamics of a top in the form of a truncated ball as it moves without slipping and spinning on a horizontal plane about a vertical. Such a system is described by differential equations with a discontinuous right-hand side. Equations describing the system dynamics are obtained and a reduction to quadratures is performed. A bifurcation analysis of the system is made and all possible types of the top’s motion depending on the system parameters and initial conditions are defined. The system dynamics in absolute space is examined. It is shown that, except for some special cases, the trajectories of motion are bounded.

Ключевые слова: integrable system, system with discontinuity, nonholonomic constraint, bifurcation diagram, absolute dynamics.

MSC: 70E15, 70E18, 70E40, 37Jxx

Поступила в редакцию: 03.04.2017
Принята в печать: 12.05.2017

Язык публикации: английский

DOI: 10.1134/S156035471703008X



Реферативные базы данных:


© МИАН, 2024