RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 4, страницы 319–352 (Mi rcd259)

Эта публикация цитируется в 10 статьях

Superintegrable Models on Riemannian Surfaces of Revolution with Integrals of any Integer Degree (I)

Galliano Valent

Laboratoire de Physique Mathématique de Provence, Avenue Marius Jouveau 1, 13090 Aix-en-Provence, France

Аннотация: We present a family of superintegrable (SI) systems which live on a Riemannian surface of revolution and which exhibit one linear integral and two integrals of any integer degree larger or equal to 2 in the momenta. When this degree is 2, one recovers a metric due to Koenigs. The local structure of these systems is under control of a $\it linear$ ordinary differential equation of order $n$ which is homogeneous for even integrals and weakly inhomogeneous for odd integrals. The form of the integrals is explicitly given in the so-called “simple” case (see Definition 2). Some globally defined examples are worked out which live either in $\mathbb{H}^2$ or in $\mathbb{R}^2$.

Ключевые слова: superintegrable two-dimensional systems, differential systems, ordinary differential equations, analysis on manifolds.

MSC: 32C05, 81V99, 37E99, 37K25

Поступила в редакцию: 09.05.2017
Принята в печать: 27.06.2017

Язык публикации: английский

DOI: 10.1134/S1560354717040013



Реферативные базы данных:


© МИАН, 2024