RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 4, страницы 386–497 (Mi rcd262)

Эта публикация цитируется в 5 статьях

Rational Integrability of Trigonometric Polynomial Potentials on the Flat Torus

Thierry Combot

Scuola Normale Superiore, Centro di Ricerca Matematica Ennio De Giorgi, Laboratorio Fibonacci, Piazza Cavalieri, 56127 Pisa

Аннотация: We consider a lattice $\mathcal{L}\subset \mathbb{R}^n$ and a trigonometric potential $V$ with frequencies $k\in\mathcal{L}$. We then prove a strong rational integrability condition on $V$, using the support of its Fourier transform. We then use this condition to prove that a real trigonometric polynomial potential is rationally integrable if and only if it separates up to rotation of the coordinates. Removing the real condition, we also make a classification of rationally integrable potentials in dimensions $2$ and $3$ and recover several integrable cases. After a complex change of variables, these potentials become real and correspond to generalized Toda integrable potentials. Moreover, along the proof, some of them with high-degree first integrals are explicitly integrated.

Ключевые слова: trigonometric polynomials, differential Galois theory, integrability, Toda lattice.

MSC: 37J30

Поступила в редакцию: 27.04.2017
Принята в печать: 01.06.2017

Язык публикации: английский

DOI: 10.1134/S1560354717040049



Реферативные базы данных:


© МИАН, 2024