RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2012, том 17, выпуск 2, страницы 131–141 (Mi rcd266)

Эта публикация цитируется в 6 статьях

On Invariant Manifolds of Nonholonomic Systems

Valery V. Kozlov

V.A. Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Аннотация: Invariant manifolds of equations governing the dynamics of conservative nonholonomic systems are investigated. These manifolds are assumed to be uniquely projected onto configuration space. The invariance conditions are represented in the form of generalized Lamb’s equations. Conditions are found under which the solutions to these equations admit a hydrodynamical description typical of Hamiltonian systems. As an illustration, nonholonomic systems on Lie groups with a left-invariant metric and left-invariant (right-invariant) constraints are considered.

Ключевые слова: invariant manifold, Lamb’s equation, vortex manifold, Bernoulli’s theorem, Helmholtz’ theorem.

MSC: 70Hxx, 37J60

Поступила в редакцию: 27.12.2011
Принята в печать: 23.01.2012

Язык публикации: английский

DOI: 10.1134/S1560354712020037



Реферативные базы данных:


© МИАН, 2024