RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 5, страницы 479–501 (Mi rcd271)

Эта публикация цитируется в 10 статьях

Connecting Orbits near the Adiabatic Limit of Lagrangian Systems with Turning Points

Alexey V. Ivanov

Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, 199034 Russia

Аннотация: We consider a natural Lagrangian system defined on a complete Riemannian manifold being subjected to action of a time-periodic force field with potential $U(q,t, \varepsilon) = f(\varepsilon t)V(q)$ depending slowly on time. It is assumed that the factor $f(\tau)$ is periodic and vanishes at least at one point on the period.
Let $X_{c}$ denote a set of isolated critical points of $V(x)$ at which $V(x)$ distinguishes its maximum or minimum. In the adiabatic limit $\varepsilon \to 0$ we prove the existence of a set $\mathcal{E}_{h}$ such that the system possesses a rich class of doubly asymptotic trajectories connecting points of $X_{c}$ for $\varepsilon \in \mathcal{E}_{h}$.

Ключевые слова: connecting orbits, homoclinic and heteroclinic orbits, nonautonomous Lagrangian system, singular perturbation, exponential dichotomy.

MSC: 37J45, 34C37, 34E20, 34D09

Поступила в редакцию: 29.05.2017
Принята в печать: 26.06.2017

Язык публикации: английский

DOI: 10.1134/S1560354717050021



Реферативные базы данных:


© МИАН, 2024