RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 5, страницы 566–578 (Mi rcd276)

Эта публикация цитируется в 5 статьях

Equilibrium for a Combinatorial Ricci Flow with Generalized Weights on a Tetrahedron

Ruslan Yu. Pepa, Theodore Yu. Popelensky

Moscow State University, Faculty of Mechanics and Mathematics, Leninskie Gory 1, Moscow, 119991 Russia

Аннотация: Chow and Lou [2] showed in 2003 that under certain conditions the combinatorial analogue of the Hamilton Ricci flow on surfaces converges to Thruston’s circle packing metric of constant curvature. The combinatorial setting includes weights defined for edges of a triangulation. A crucial assumption in [2] was that the weights are nonnegative.We have recently shown that the same statement on convergence can be proved under weaker conditions: some weights can be negative and should satisfy certain inequalities. In this note we show that there are some restrictions for weakening the conditions. Namely, we show that in some situations the combinatorial Ricci flow has no equilibrium or has several points of equilibrium and, in particular, the convergence theorem is no longer valid.

Ключевые слова: circle packing, combinatorial Ricci flow.

MSC: 52C26

Поступила в редакцию: 07.06.2017
Принята в печать: 13.09.2017

Язык публикации: английский

DOI: 10.1134/S1560354717050070



Реферативные базы данных:


© МИАН, 2025