RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 6, страницы 616–649 (Mi rcd280)

Эта публикация цитируется в 3 статьях

Normalization in Lie Algebras via Mould Calculus and Applications

Thierry Paula, David Sauzinb

a CMLS, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France
b CNRS UMR 8028 – IMCCE, Observatoire de Paris, 75014 Paris, France

Аннотация: We establish Écalle’s mould calculus in an abstract Lie-theoretic setting and use it to solve a normalization problem, which covers several formal normal form problems in the theory of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to a mould equation, the solutions of which are remarkably explicit and can be fully described by means of a gauge transformation group. The dynamical applications include the construction of Poincaré–Dulac formal normal forms for a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff normal forms both in classical and quantum situations. As a by-product we obtain, in the case of harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.

Ключевые слова: mould calculus, normal forms, dynamical systems, quantum mechanics, semiclassical approximation.

MSC: 37J40, 81Q15, 81Q20

Поступила в редакцию: 24.05.2017
Принята в печать: 28.08.2017

Язык публикации: английский

DOI: 10.1134/S1560354717060041



Реферативные базы данных:


© МИАН, 2024