RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 6, страницы 740–749 (Mi rcd286)

Эта публикация цитируется в 11 статьях

Sigma Map Dynamics and Bifurcations

Aminur Rahmana, Yogesh Joshib, Denis Blackmorec

a Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409 USA
b Department of Mathematics and Computer Science, Kingsborough Community College, Brooklyn, NY 11235 USA
c Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102-1982 USA

Аннотация: Some interesting variants of walking droplet based discrete dynamical bifurcations arising from diffeomorphisms are analyzed in detail. A notable feature of these new bifurcations is that, like Smale horseshoes, they can be represented by simple geometric paradigms, which markedly simplify their analysis. The two-dimensional diffeomorphisms that produce these bifurcations are called sigma maps or double sigma maps for reasons that are made manifest in this investigation. Several examples are presented along with their dynamical simulations.

Ключевые слова: Discrete dynamical systems, bifurcations, chaotic strange attractors, invariant sets, homoclinic and heteroclinic orbits, sigma maps, dynamical crises.

MSC: 37C05; 37C29; 37C70; 37D45; 37G35

Поступила в редакцию: 17.08.2017
Принята в печать: 21.10.2017

Язык публикации: английский

DOI: 10.1134/S1560354717060107



Реферативные базы данных:


© МИАН, 2025