RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 8, страницы 909–936 (Mi rcd299)

Эта публикация цитируется в 20 статьях

Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group

Andrei A. Ardentov, Yuri L. Sachkov

Program Systems Institute of RAS, Pereslavl-Zalessky, Yaroslavl Region, 152020 Russia

Аннотация: We consider the nilpotent left-invariant sub-Riemannian structure on the Engel group. This structure gives a fundamental local approximation of a generic rank $2$ sub-Riemannian structure on a $4$-manifold near a generic point (in particular, of the kinematic models of a car with a trailer). On the other hand, this is the simplest sub-Riemannian structure of step three. We describe the global structure of the cut locus (the set of points where geodesics lose their global optimality), the Maxwell set (the set of points that admit more than one minimizer), and the intersection of the cut locus with the caustic (the set of conjugate points along all geodesics). The group of symmetries of the cut locus is described: it is generated by a one-parameter group of dilations $\mathbb R_+$ and a discrete group of reflections $\mathbb Z_2 \times \mathbb Z_2 \times \mathbb Z_2$. The cut locus admits a stratification with 6 three-dimensional strata, 12 two-dimensional strata, and 2 one-dimensional strata. Three-dimensional strata of the cut locus are Maxwell strata of multiplicity 2 (for each point there are 2 minimizers). Two-dimensional strata of the cut locus consist of conjugate points. Finally, one-dimensional strata are Maxwell strata of infinite multiplicity, they consist of conjugate points as well. Projections of sub-Riemannian geodesics to the 2-dimensional plane of the distribution are Euler elasticae. For each point of the cut locus, we describe the Euler elasticae corresponding to minimizers coming to this point. Finally, we describe the structure of the optimal synthesis, i. e., the set of minimizers for each terminal point in the Engel group.

Ключевые слова: sub-Riemannian geometry, optimal control, Engel group, Maxwell strata, cut locus, mobile robot, Euler's elasticae.

MSC: 53C17, 49K15

Поступила в редакцию: 20.09.2017
Принята в печать: 21.10.2017

Язык публикации: английский

DOI: 10.1134/S1560354717080020



Реферативные базы данных:


© МИАН, 2024