RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 8, страницы 955–975 (Mi rcd302)

Эта публикация цитируется в 41 статьях

The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration

Ivan A. Bizyaeva, Alexey V. Borisovb, Ivan S. Mamaevc

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
b Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
c Izhevsk State Technical University, ul. Studencheskaya 7, Izhevsk, 426069 Russia

Аннотация: This paper is concerned with the Chaplygin sleigh with time-varying mass distribution (parametric excitation). The focus is on the case where excitation is induced by a material point that executes periodic oscillations in a direction transverse to the plane of the knife edge of the sleigh. In this case, the problem reduces to investigating a reduced system of two first-order equations with periodic coefficients, which is similar to various nonlinear parametric oscillators. Depending on the parameters in the reduced system, one can observe different types of motion, including those accompanied by strange attractors leading to a chaotic (diffusion) trajectory of the sleigh on the plane. The problem of unbounded acceleration (an analog of Fermi acceleration) of the sleigh is examined in detail. It is shown that such an acceleration arises due to the position of the moving point relative to the line of action of the nonholonomic constraint and the center of mass of the platform. Various special cases of existence of tensor invariants are found.

Ключевые слова: nonholonomic mechanics, Fermi acceleration, Chaplygin sleigh, parametric oscillator, tensor invariants, involution, strange attractor, Lyapunov exponents, reversible systems, chaotic dynamics.

MSC: 37J60, 34A34

Поступила в редакцию: 06.11.2017
Принята в печать: 07.12.2017

Язык публикации: английский

DOI: 10.1134/S1560354717080056



Реферативные базы данных:


© МИАН, 2024