RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 8, страницы 976–995 (Mi rcd303)

Эта публикация цитируется в 12 статьях

Bifurcation Analysis of the Dynamics of Two Vortices in a Bose – Einstein Condensate. The Case of Intensities of Opposite Signs

Sergei V. Sokolovab, Pavel E. Ryabovacd

a Institute of Machines Science, Russian Academy of Sciences, Maly Kharitonyevsky per. 4, Moscow, 101990 Russia
b Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region, 141701 Russia
c Financial University under the Government of the Russian Federation, Leningradsky prosp. 49, Moscow, 125993 Russia
d Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia

Аннотация: This paper is concerned with a system two point vortices in a Bose–Einstein condensate enclosed in a trap. The Hamiltonian form of equations of motion is presented and its Liouville integrability is shown. A bifurcation diagram is constructed, analysis of bifurcations of Liouville tori is carried out for the case of opposite-signed vortices, and the types of critical motions are identified.

Ключевые слова: integrable Hamiltonian systems, Bose – Einstein condensate, point vortices, bifurcation analysis.

MSC: 70E05, 70E17, 37J35, 34A05

Поступила в редакцию: 15.09.2017
Принята в печать: 27.11.2017

Язык публикации: английский

DOI: 10.1134/S1560354717080068



Реферативные базы данных:


© МИАН, 2025