RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 1, страницы 47–53 (Mi rcd307)

Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds

David Martínez-Torresa, Eva Mirandabc

a Department of Mathematics, Pontificia Universidade do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, CEP 22451-900, Brazil
b Department of Mathematics-UPC and BGSMath, Barcelona, Spain
c CEREMADE (Université de Paris Dauphine), IMCCE (Observatoire de Paris), and IMJ (Université de Paris Diderot), 77 Avenue Denfert Rochereau, Paris, 75014, France

Аннотация: We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.

Ключевые слова: Poisson homology, foliated cohomology.

MSC: 53D17, 53C12

Поступила в редакцию: 05.09.2017
Принята в печать: 20.11.2017

Язык публикации: английский

DOI: 10.1134/S1560354718010045



Реферативные базы данных:


© МИАН, 2024