Аннотация:
For any strictly convex planar domain
$\Omega \subset \mathbb R^2$ with a $C^\infty$ boundary
one can associate an infinite sequence of spectral
invariants introduced by Marvizi – Merlose [5].
These invariants can generically be determined using
the spectrum of the Dirichlet problem of the Laplace operator.
A natural question asks if this collection is sufficient to determine
$\Omega$ up to isometry. In this paper we give
a counterexample, namely, we present two nonisometric
domains $\Omega$ and $\bar \Omega$ with the same collection
of Marvizi – Melrose invariants. Moreover, each domain
has countably many periodic orbits $\{S^n\}_{n \geqslant 1}$ (resp.
$\{ \bar S^n\}_{n \geqslant 1}$) of period going to infinity such that
$ S^n $ and $ \bar S^n $ have the same period and perimeter for each $ n $.