RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 1, страницы 54–59 (Mi rcd308)

Эта публикация цитируется в 1 статье

Nonisometric Domains with the Same Marvizi–Melrose Invariants

Lev Buhovskya, Vadim Kaloshinb

a School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
b Department of Mathematics, University of Maryland, College Park, MD, 20740, USA

Аннотация: For any strictly convex planar domain $\Omega \subset \mathbb R^2$ with a $C^\infty$ boundary one can associate an infinite sequence of spectral invariants introduced by Marvizi – Merlose [5]. These invariants can generically be determined using the spectrum of the Dirichlet problem of the Laplace operator. A natural question asks if this collection is sufficient to determine $\Omega$ up to isometry. In this paper we give a counterexample, namely, we present two nonisometric domains $\Omega$ and $\bar \Omega$ with the same collection of Marvizi – Melrose invariants. Moreover, each domain has countably many periodic orbits $\{S^n\}_{n \geqslant 1}$ (resp. $\{ \bar S^n\}_{n \geqslant 1}$) of period going to infinity such that $ S^n $ and $ \bar S^n $ have the same period and perimeter for each $ n $.

Ключевые слова: convex planar billiards, length spectrum, Laplace spectrum, Marvizi–Melrose spectral invariants.

MSC: 37D50, 35P30, 37E40, 37J50

Поступила в редакцию: 23.09.2017
Принята в печать: 09.11.2017

Язык публикации: английский

DOI: 10.1134/S1560354718010057



Реферативные базы данных:


© МИАН, 2024