RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 3, страницы 227–247 (Mi rcd320)

Эта публикация цитируется в 5 статьях

Complete Set of Invariants for a Bykov Attractor

Maria Carvalho, Alexandre P. Rodrigues

Centro de Matemática da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

Аннотация: In this paper we consider an attracting heteroclinic cycle made by a 1-dimensional and a 2-dimensional separatrices between two hyperbolic saddles having complex eigenvalues. The basin of the global attractor exhibits historic behavior and, from the asymptotic properties of these nonconverging time averages, we obtain a complete set of invariants under topological conjugacy in a neighborhood of the cycle. These invariants are determined by the quotient of the real parts of the eigenvalues of the equilibria, a linear combination of their imaginary components and also the transition maps between two cross sections on the separatrices.

Ключевые слова: Bykov attractor, historic behavior, conjugacy, complete set of invariants.

MSC: 34C28, 34C29, 34C37, 37D05, 37G35

Поступила в редакцию: 19.07.2017
Принята в печать: 28.01.2018

Язык публикации: английский

DOI: 10.1134/S1560354718030012



Реферативные базы данных:


© МИАН, 2024