RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 3, страницы 291–303 (Mi rcd324)

Эта публикация цитируется в 2 статьях

Nonintegrability of Parametrically Forced Nonlinear Oscillators

Shoya Motonaga, Kazuyuki Yagasaki

Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Аннотация: We discuss nonintegrability of parametrically forced nonlinear oscillators which are represented by second-order homogeneous differential equations with trigonometric coefficients and contain the Duffing and van der Pol oscillators as special cases. Specifically, we give sufficient conditions for their rational nonintegrability in the meaning of Bogoyavlenskij, using the Kovacic algorithm as well as an extension of the Morales–Ramis theory due to Ayoul and Zung. In application of the extended Morales–Ramis theory, for the associated variational equations, the identity components of their differential Galois groups are shown to be not commutative even if the differential Galois groups are triangularizable, i. e., they can be solved by quadratures. The obtained results are very general and reveal their rational nonintegrability for the wide class of parametrically forced nonlinear oscillators. We also give two examples for the van der Pol and Duffing oscillators to demonstrate our results.

Ключевые слова: nonintegrability, nonlinear oscillator, Morales – Ramis theory, differential Galois theory.

MSC: 37J30, 34C15, 70K40

Поступила в редакцию: 16.02.2018
Принята в печать: 28.03.2018

Язык публикации: английский

DOI: 10.1134/S156035471803005X



Реферативные базы данных:


© МИАН, 2024