RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 3, страницы 339–354 (Mi rcd327)

Эта публикация цитируется в 7 статьях

A Nonholonomic Model of the Paul Trap

Alexey V. Borisovab, Alexander A. Kilinc, Ivan S. Mamaevd

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
b A. A. Blagonravov Mechanical Engineering Research Institute of RAS, ul. Bardina 4, Moscow, 117334 Russia
c Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
d Izhevsk State Technical University, ul. Studencheskaya 7, Izhevsk, 426069 Russia

Аннотация: In this paper, equations of motion for the problem of a ball rolling without slipping on a rotating hyperbolic paraboloid are obtained. Integrals of motions and an invariant measure are found. A detailed linear stability analysis of the ball’s rotations at the saddle point of the hyperbolic paraboloid is made. A three-dimensional Poincaré map generated by the phase flow of the problem is numerically investigated and the existence of a region of bounded trajectories in a neighborhood of the saddle point of the paraboloid is demonstrated. It is shown that a similar problem of a ball rolling on a rotating paraboloid, considered within the framework of the rubber model, can be reduced to a Hamiltonian system which includes the Brower problem as a particular case.

Ключевые слова: Paul trap, stability, nonholonomic system, three-dimensional map, gyroscopic stabilization, noninertial coordinate system, Poincaré map, nonholonomic constraint, rolling without slipping, region of linear stability.

MSC: 37J60, 34A34

Поступила в редакцию: 12.03.2018
Принята в печать: 16.04.2018

Язык публикации: английский

DOI: 10.1134/S1560354718030085



Реферативные базы данных:


© МИАН, 2024