RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2015, том 20, выпуск 6, страницы 627–648 (Mi rcd33)

Эта публикация цитируется в 7 статьях

On the Stability of Periodic Hamiltonian Systems with One Degree of Freedom in the Case of Degeneracy

Boris S. Bardina, Victor Lancharesb

a Department of Theoretical Mechanics, Faculty of Applied Mathematics and Physics, Moscow Aviation Institute, Volokolamskoe sh. 4, Moscow, 125993 Russia
b Departamento de Matemáticas y Computación, CIME, Universidad de La Rioja, 26004 Logroño, Spain

Аннотация: We deal with the stability problem of an equilibrium position of a periodic Hamiltonian system with one degree of freedom. We suppose the Hamiltonian is analytic in a small neighborhood of the equilibrium position, and the characteristic exponents of the linearized system have zero real part, i.e., a nonlinear analysis is necessary to study the stability in the sense of Lyapunov. In general, the stability character of the equilibrium depends on nonzero terms of the lowest order $N$ $(N>2)$ in the Hamiltonian normal form, and the stability problem can be solved by using known criteria.
We study the so-called degenerate cases, when terms of order higher than $N$ must be taken into account to solve the stability problem. For such degenerate cases, we establish general conditions for stability and instability. Besides, we apply these results to obtain new stability criteria for the cases of degeneracy, which appear in the presence of first, second, third and fourth order resonances.

Ключевые слова: Hamiltonian systems, Lyapunov stability, stability theory, normal forms, KAM theory, Chetaev's function, resonance.

MSC: 34D20, 37C75, 37J4

Поступила в редакцию: 08.09.2015
Принята в печать: 05.10.2015

Язык публикации: английский

DOI: 10.1134/S1560354715060015



Реферативные базы данных:


© МИАН, 2024