RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 5, страницы 519–529 (Mi rcd342)

Эта публикация цитируется в 5 статьях

Dipole and Multipole Flows with Point Vortices and Vortex Sheets

Kevin A. O'Neil

Department of Mathematics, The University of Tulsa, 800 Tucker Dr., Tulsa OK 74104 USA

Аннотация: An exact method is presented for obtaining uniformly translating distributions of vorticity in a two-dimensional ideal fluid, or equivalently, stationary distributions in the presence of a uniform background flow. These distributions are generalizations of the well-known vortex dipole and consist of a collection of point vortices and an equal number of bounded vortex sheets. Both the vorticity density of the vortex sheets and the velocity field of the fluid are expressed in terms of a simple rational function in which the point vortex positions and strengths appear as parameters. The vortex sheets lie on heteroclinic streamlines of the flow. Dipoles and multipoles that move parallel to a straight fluid boundary are also obtained. By setting the translation velocity to zero, equilibrium configurations of point vortices and vortex sheets are found.

Ключевые слова: point vortex, vortex sheet, equilibrium, dipole.

MSC: 76B47, 37F10, 34M15

Поступила в редакцию: 30.05.2018
Принята в печать: 24.08.2018

Язык публикации: английский

DOI: 10.1134/S1560354718050039



Реферативные базы данных:


© МИАН, 2024