RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 5, страницы 580–582 (Mi rcd346)

Эта публикация цитируется в 1 статье

Relations Satisfied by Point Vortex Equilibria with Strength Ratio $-2$

Kevin A. O'Neil

Department of Mathematics, The University of Tulsa, 800 Tucker Dr., Tulsa OK 74104 USA

Аннотация: Relations satisfied by the roots of the Loutsenko sequence of polynomials are derived. These roots are known to correspond to families of stationary and uniformly translating point vortices with two vortex strengths in ratio $-2$. The relations are analogous to those satisfied by the roots of the Adler–Moser polynomials, corresponding to equilibria with ratio $-1$. The proof uses an analysis of the differential equation that these polynomial pairs satisfy.

Ключевые слова: point vortex, polynomial, equilibrium.

MSC: 76B47, 37F10, 34M15

Поступила в редакцию: 30.05.2018
Принята в печать: 04.09.2018

Язык публикации: английский

DOI: 10.1134/S1560354718050076



Реферативные базы данных:


© МИАН, 2024