RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 5, страницы 595–612 (Mi rcd348)

Эта публикация цитируется в 9 статьях

Choreographies in the n-vortex Problem

Renato C. Callejaa, Eusebius J. Doedelb, Carlos García-Azpeitiac

a IIMAS, Universidad Nacional Autónoma de México, Apdo. Postal 20-726, C.P. 01000, México D.F., México
b Concordia University, 1455 Boulevard De Maisonneuve West, Montreal, Quebec, Canada, H3G 1M8
c Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C.P. 04510, Ciudad Universitaria, CDMX. México

Аннотация: We consider the equations of motion of $n$ vortices of equal circulation in the plane, in a disk and on a sphere. The vortices form a polygonal equilibrium in a rotating frame of reference. We use numerical continuation in a boundary value setting to determine the Lyapunov families of periodic orbits that arise from the polygonal relative equilibrium. When the frequency of a Lyapunov orbit and the frequency of the rotating frame have a rational relationship, the orbit is also periodic in the inertial frame. A dense set of Lyapunov orbits, with frequencies satisfying a Diophantine equation, corresponds to choreographies of $n$ vortices. We include numerical results for all cases, for various values of $n$, and we provide key details on the computational approach.

Ключевые слова: $n$-vortex problem, choreographies, continuation methods.

MSC: 34C25,37G40,47H11,54F45

Поступила в редакцию: 15.08.2018
Принята в печать: 30.08.2018

Язык публикации: английский

DOI: 10.1134/S156035471805009X



Реферативные базы данных:


© МИАН, 2024