RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 5, страницы 613–636 (Mi rcd349)

Эта публикация цитируется в 5 статьях

Three Vortices in Spaces of Constant Curvature: Reduction, Poisson Geometry, and Stability

Alexey V. Borisova, Ivan S. Mamaevb, Ivan A. Bizyaeva

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia

Аннотация: This paper is concerned with the problem of three vortices on a sphere $S^2$ and the Lobachevsky plane $L^2$. After reduction, the problem reduces in both cases to investigating a Hamiltonian system with a degenerate quadratic Poisson bracket, which makes it possible to study it using the methods of Poisson geometry. This paper presents a topological classification of types of symplectic leaves depending on the values of Casimir functions and system parameters.

Ключевые слова: Poisson geometry, point vortices, reduction, quadratic Poisson bracket, spaces of constant curvature, symplectic leaf, collinear configurations.

MSC: 76M23, 37J05

Поступила в редакцию: 02.08.2018
Принята в печать: 04.09.2018

Язык публикации: английский

DOI: 10.1134/S1560354718050106



Реферативные базы данных:


© МИАН, 2024