RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 6, страницы 685–694 (Mi rcd359)

Эта публикация цитируется в 2 статьях

A New Proof of the Existence of Embedded Surfaces with Anosov Geodesic Flow

Victor Donnaya, Daniel Visscherb

a Bryn Mawr College, Bryn Mawr, Pennsylvania, USA
b Ithaca College, Ithaca, New York, USA

Аннотация: We give a new proof of the existence of compact surfaces embedded in $\mathbb{R}^3$ with Anosov geodesic flows. This proof starts with a noncompact model surface whose geodesic flow is shown to be Anosov using a uniformly strictly invariant cone condition. Using a sequence of explicit maps based on the standard torus embedding, we produce compact embedded surfaces that can be seen as small perturbations of the Anosov model system and hence are themselves Anosov.

Ключевые слова: geodesic flow, embedded surfaces, Anosov flow, cone fields.

MSC: 37D20, 37D40, 53D25

Поступила в редакцию: 03.08.2018
Принята в печать: 12.09.2018

Язык публикации: английский

DOI: 10.1134/S1560354718060047



Реферативные базы данных:


© МИАН, 2024