RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 6, страницы 695–703 (Mi rcd360)

Эта публикация цитируется в 2 статьях

Embedding the Kepler Problem as a Surface of Revolution

Richard Moeckel

School of Mathematics, University of Minnesota, Minneapolis, MN 55455

Аннотация: Solutions of the planar Kepler problem with fixed energy $h$ determine geodesics of the corresponding Jacobi–Maupertuis metric. This is a Riemannian metric on $\mathbb{R}^2$ if $h\geqslant 0$ or on a disk $\mathcal{D}\subset \mathbb{R}^2$ if $h<0$. The metric is singular at the origin (the collision singularity) and also on the boundary of the disk when $h<0$. The Kepler problem and the corresponding metric are invariant under rotations of the plane and it is natural to wonder whether the metric can be realized as a surface of revolution in $\mathbb{R}^3$ or some other simple space. In this note, we use elementary methods to study the geometry of the Kepler metric and the embedding problem. Embeddings of the metrics with $h\geqslant0$ as surfaces of revolution in $\mathbb{R}^3$ are constructed explicitly but no such embedding exists for $h<0$ due to a problem near the boundary of the disk. We prove a theorem showing that the same problem occurs for every analytic central force potential. Returning to the Kepler metric, we rule out embeddings in the three-sphere or hyperbolic space, but succeed in constructing an embedding in four-dimensional Minkowski spacetime. Indeed, there are many such embeddings.

Ключевые слова: celestial mechanics, Jacobi–Maupertuis metric, surfaces of revolution.

MSC: 70F05, 70F15, 70G45, 53A05, 53C42, 53C80

Поступила в редакцию: 09.08.2018
Принята в печать: 21.09.2018

Язык публикации: английский

DOI: 10.1134/S1560354718060059



Реферативные базы данных:


© МИАН, 2024