RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2015, том 20, выпуск 6, страницы 679–690 (Mi rcd37)

On Constructing Simple Examples of Three-dimensional Flows with Multiple Heteroclinic Cycles

Evgeny A. Grines, Grigory V. Osipov

Department of Control Theory and System Dynamics, Nizhni Novgorod State University, ul. Gagarina 23, Nizhni Novgorod, 606950 Russia

Аннотация: In this work we suggest a simple method for constructing $G$-equivariant systems of ODEs in $\mathbb{R}^3$ (i.e., systems whose trajectories are invariant under the action of this group on $\mathbb{R}^3$) that possess multiple disjoint heteroclinic networks. Heteroclinic networks under consideration consist of saddle equilibria that belong to coordinate axes and one-dimensional separatrices connecting them. We require these separatrices to lie on coordinate planes. We also assume the action of $G$ on $\mathbb{R}^3$ to be generated by cyclic permutation of coordinate variables and reflection with respect to one of the coordinate planes. As an example, we provide a step-by-step construction of three-dimensional flow with two disjoint heteroclinic networks. Also, we present a sketch of global dynamics analysis for the minimal example.

Ключевые слова: heteroclinic cycle, heteroclinic network.

MSC: 34C37, 37C80

Поступила в редакцию: 13.10.2015
Принята в печать: 02.11.2015

Язык публикации: английский

DOI: 10.1134/S1560354715060040



Реферативные базы данных:


© МИАН, 2024