RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 7-8, страницы 842–849 (Mi rcd370)

The Maslov Complex Germ and Semiclassical Spectral Series Corresponding to Singular Invariant Curves of Partially Integrable Hamiltonian Systems

Andrei I. Shafarevichabcd

a National Research Centre “Kurchatov Institute”, pl. Akademika Kurchatova 1, Moscow, 123182 Russia
b Institute for Problems in Mechanics, pr. Vernadskogo 101-1, Moscow, 119526 Russia
c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Vorob’evy gory, Moscow, 119899 Russia
d Moscow Institute of Physics and Technology, Inststitutskii per. 9, Dolgoprudnyi, Moscow, 141700 Russia

Аннотация: We study semiclassical eigenvalues of the Schroedinger operator, corresponding to singular invariant curve of the corresponding classical system. The latter system is assumed to be partially integrable. We describe geometric object corresponding to the eigenvalues (comlex vector bundle over a graph) and compute semiclassical eigenvalues in terms of the corresponding holonomy group.

Ключевые слова: semiclassical eigenvalues, complex vector bundles, holonomy group.

MSC: 53C56, 35P20

Поступила в редакцию: 16.10.2018
Принята в печать: 14.11.2018

Язык публикации: английский

DOI: 10.1134/S1560354718070031



Реферативные базы данных:


© МИАН, 2024