RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 7-8, страницы 933–947 (Mi rcd375)

Эта публикация цитируется в 5 статьях

Local Integrability of Poincaré – Dulac Normal Forms

Shogo Yamanaka

Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Аннотация: We consider dynamical systems in Poincaré-Dulac normal form having an equilibrium at the origin, and give a sufficient condition for them to be integrable, and prove that it is necessary for their special integrability under some condition. Moreover, we show that they are integrable if their resonance degrees are 0 or 1 and that they may be nonintegrable if their resonance degrees are greater than 1, as in Birkhoff normal forms for Hamiltonian systems. We demonstrate the theoretical results for a normal form appearing in the codimension-two fold-Hopf bifurcation.

Ключевые слова: Poincaré-Dulac normal form, integrability, dynamical system.

MSC: 34M35, 37J30

Поступила в редакцию: 17.05.2018
Принята в печать: 26.09.2018

Язык публикации: английский

DOI: 10.1134/S1560354718070080



Реферативные базы данных:


© МИАН, 2024