RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2015, том 20, выпуск 6, страницы 691–700 (Mi rcd38)

Asymptotic Solutions for Linear and Nonlinear MHD Systems with a Rapid Jump near a Surface. Dynamics of the Surface of the Jump and Evolution of the Magnetic Field

Anna I. Alliluevaabc, Andrei I. Shafarevichcdab

a Institute for Problems in Mechanics, pr. Vernadskogo 101-1, Moscow, 119526 Russia
b National Research Centre “Kurchatov Institute”, pl. Akademika Kurchatova 1, Moscow, 123182 Russia
c Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
d M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 Russia

Аннотация: We review our recent results concerning the asymptotic solutions for both linear and nonlinear MHD equations.We describe the asymptotic structure of the solution with a rapid jump near a 2D-surface. For the linear system we demonstrate the effect of the instantaneous growth of the solution. We also study the weak limit of the solution and the corresponding generalized problem. For the nonlinear system we describe the asymptotic division into different modes, the free boundary problem for the movement of the surface and the equation on the moving surface for the profile of the asymptotic solution. We also study the possibility of the instantaneous growth of the magnetic field. It appears that the growth is possible only in the case of the so-called degenerate Alfvén modes; the latter appear if the main term of the magnetic field is tangent to the surface of the jump.

Ключевые слова: MHD equations, discontinuous solutions, free boundary problems, dynamo theory, growth of the magnetic field.

MSC: 35B40, 35D05, 35Q, 76B

Поступила в редакцию: 17.09.2015
Принята в печать: 08.11.2015

Язык публикации: английский

DOI: 10.1134/S1560354715060052



Реферативные базы данных:


© МИАН, 2024