RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2012, том 17, выпуск 1, страницы 72–96 (Mi rcd384)

Эта публикация цитируется в 13 статьях

One Invariant Measure and Different Poisson Brackets for Two Non-Holonomic Systems

Andrey V. Tsiganov

St. Petersburg State University, ul. Ulyanovskaya 1, St. Petersburg, 198504 Russia

Аннотация: We discuss the non-holonomic Chaplygin and the Borisov–Mamaev–Fedorov systems, for which symplectic forms are different deformations of the square root from the corresponding invariant volume form. In both cases second Poisson bivectors are determined by $L$-tensors with non-zero torsion on configuration space, in contrast with the well-known Eisenhart–Benenti and Turiel constructions.

Ключевые слова: non-holonomic mechanics, Chaplygin’s rolling ball, Poisson brackets.

MSC: 37J60, 37J35, 53D17, 70E18, 70F25, 70H45

Поступила в редакцию: 28.10.2011
Принята в печать: 29.12.2011

Язык публикации: английский

DOI: 10.1134/S1560354712010078



© МИАН, 2024