RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2019, том 24, выпуск 1, страницы 80–89 (Mi rcd390)

Эта публикация цитируется в 3 статьях

Evolution of Lagrangian Manifolds and Asymptotic Solutions to the Linearized Equations of Gas Dynamics

Anna I. Alliluevaabc, Andrei I. Shafarevichcbad

a National Research Centre “Kurchatov Institute”, pl. Akademika Kurchatova 1, Moscow, 123182 Russia
b Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
c Institute for Problems in Mechanics, pr. Vernadskogo 101-1, Moscow, 119526 Russia
d M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 Russia

Аннотация: We study asymptotic solution of the Cauchy problem for linearized equations of gas dynamics with rapidly oscillating initial data. We construct the formal serie, satisfying this problem. This serie is naturally divided into three parts, corresponding to the hydrodynamic mode and two acoustic modes. The summands of the serie are expressed in terms of the Maslov canonic operator on moving Lagrangian manifolds. Evolution of the manifolds is governed by the corresponding classical Hamiltonian systems.

Ключевые слова: Lagrangian manifolds, short-wave asymptotics, equations of gas dynamics.

MSC: 53C56, 35P20

Поступила в редакцию: 22.12.2018
Принята в печать: 09.01.2019

Язык публикации: английский

DOI: 10.1134/S1560354719010040



Реферативные базы данных:


© МИАН, 2024