RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2012, том 17, выпуск 2, страницы 122–130 (Mi rcd395)

Typical Singularities of Polymorphisms Generated by the Problem of Destruction of an Adiabatic Invariant

Pavel E. Golubtsov

M. V. Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119234 Russia

Аннотация: Polymorphisms are a class of multivalued measure-preserving self-maps of Lebesgue spaces. Specifically, polymorphisms can be used to describe the change in the adiabatic invariant due to separatrix crossing. In this case, it consists of smooth functions mapping the unit interval into itself. In addition, there are some conditions these functions must satisfy in a typical case, namely, that their endpoints form rigid structures that persist under small perturbations. Here we will describe these conditions.

Ключевые слова: adiabatic invariant, adiabatic approximation, polymorphisms, typical singularities.

MSC: 37H99

Поступила в редакцию: 27.12.2011
Принята в печать: 08.02.2012

Язык публикации: английский

DOI: 10.1134/S1560354712020025



© МИАН, 2024