RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2012, том 17, выпуск 5, страницы 371–384 (Mi rcd409)

Эта публикация цитируется в 11 статьях

Point Vortices and Classical Orthogonal Polynomials

Maria V. Demina, Nikolai A. Kudryashov

Department of Applied Mathematics, National Research Nuclear University “MEPhI”, 31 Kashirskoe Shosse, 115409 Moscow, Russian Federation

Аннотация: Stationary equilibria of point vortices in the plane and on the cylinder in the presence of a background flow are studied. Vortex systems with an arbitrary choice of circulations are considered. Differential equations satisfied by generating polynomials of vortex configurations are derived. It is shown that these equations can be reduced to a single one. It is found that polynomials that are Wronskians of classical orthogonal polynomials solve the latter equation. As a consequence vortex equilibria at a certain choice of background flows can be described with the help of Wronskians of classical orthogonal polynomials.

Ключевые слова: point vortices, special polynomials, classical orthogonal polynomials.

MSC: 33D45+76M23

Поступила в редакцию: 24.04.2012
Принята в печать: 16.06.2012

Язык публикации: английский

DOI: 10.1134/S1560354712050012



Реферативные базы данных:


© МИАН, 2024