RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2015, том 20, выпуск 6, страницы 729–738 (Mi rcd41)

Эта публикация цитируется в 19 статьях

On Geodesics of the Rotation Group $SO(3)$

Alyssa Novelia, Oliver M. O'Reilly

Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720-1740, USA

Аннотация: Geodesics on $SO(3)$ are characterized by constant angular velocity motions and as great circles on a three-sphere. The former interpretation is widely used in optometry and the latter features in the interpolation of rotations in computer graphics. The simplicity of these two disparate interpretations belies the complexity of the corresponding rotations. Using a quaternion representation for a rotation, we present a simple proof of the equivalence of the aforementioned characterizations and a straightforward method to establish features of the corresponding rotations.

Ключевые слова: quaternions, constraints, geodesics, Listing’s law, Slerp.

MSC: 70E40, 53D25

Поступила в редакцию: 24.04.2015
Принята в печать: 25.09.2015

Язык публикации: английский

DOI: 10.1134/S1560354715060088



Реферативные базы данных:


© МИАН, 2024