RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2012, том 17, выпуск 6, страницы 533–546 (Mi rcd419)

Эта публикация цитируется в 16 статьях

On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev–Steklov Case

B. S. Bardin, T. V. Rudenko, A. A. Savin

Theoretical Mechanics department, Faculty of Applied Mathematics and Physics, Moscow Aviation institute, Volokolamskoe sh. 4, Moscow, 125871, Russia

Аннотация: We deal with the problem of orbital stability of pendulum-like periodic motions of a heavy rigid body with a fixed point. We suppose that a mass geometry corresponds to the Bobylev–Steklov case. The stability problem is solved in nonlinear setting.
In the case of small amplitude oscillations and rotations with large angular velocities the small parameter can be introduced and the problem can be investigated analytically.
In the case of unspecified oscillation amplitude or rotational angular velocity the problem is reduced to analysis of stability of a fixed point of the symplectic map generated by the equations of the perturbed motion. The coefficients of the symplectic map are determined numerically. Rigorous results on the orbital stability or instability of unperturbed motion are obtained by analyzing these coefficients.

Ключевые слова: Hamiltonian system, periodic orbits, normal form, resonance, action-angel variables, orbital stability.

MSC: 34C15, 34C20, 34C23, 34C25

Поступила в редакцию: 30.08.2012
Принята в печать: 23.10.2012

Язык публикации: английский

DOI: 10.1134/S1560354712060056



Реферативные базы данных:


© МИАН, 2025