RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2015, том 20, выпуск 3, страницы 247–276 (Mi rcd42)

Эта публикация цитируется в 4 статьях

Projective Dynamics and First Integrals

Alain Albouy

IMCCE-CNRS-UMR, Observatoire de Paris, 77, avenue Denfert-Rochereau, 75014 Paris, France

Аннотация: We present the theory of tensors with Young tableau symmetry as an efficient computational tool in dealing with the polynomial first integrals of a natural system in classical mechanics. We relate a special kind of such first integrals, already studied by Lundmark, to Beltrami’s theorem about projectively flat Riemannian manifolds. We set the ground for a new and simple theory of the integrable systems having only quadratic first integrals. This theory begins with two centered quadrics related by central projection, each quadric being a model of a space of constant curvature. Finally, we present an extension of these models to the case of degenerate quadratic forms.

Ключевые слова: bi-hamiltonian, Beltrami’s theorem, Young tableau symmetry, free motion, force field, decomposability preserving.

MSC: 70F10, 53A20

Поступила в редакцию: 02.02.2015

Язык публикации: английский

DOI: 10.1134/S156035471503004



Реферативные базы данных:


© МИАН, 2024