RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2011, том 16, выпуск 1-2, страницы 61–78 (Mi rcd427)

Эта публикация цитируется в 10 статьях

Resonance tongues in the quasi-periodic Hill–Schrödinger equation with three frequencies

Joaquim Puiga, Carles Simób

a Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal, 647. 08028 Barcelona, Spain
b Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585. 08007 Barcelona, Spain

Аннотация: In this paper we investigate numerically the following Hill's equation $x''+(a+bq(t))x=0$ where $q(t)=\cos{t}+\cos{\sqrt{2}t}+\cos{\sqrt{3}t}$ is a quasi-periodic forcing with three rationally independent frequencies. It appears, also, as the eigenvalue equation of a Schrödinger operator with quasi-periodic potential.
Massive numerical computations were performed for the rotation number and the Lyapunov exponent in order to detect open and collapsed gaps, resonance tongues. Our results show that the quasi-periodic case with three independent frequencies is very different not only from the periodic analogs, but also from the case of two frequencies. Indeed, for large values of $b$ the spectrum contains open intervals at the bottom. From a dynamical point of view we numerically give evidence of the existence of open intervals of $a$, for large $b$, where the system is nonuniformly hyperbolic: the system does not have an exponential dichotomy but the Lyapunov exponent is positive. In contrast with the region with zero Lyapunov exponents, both the rotation number and the Lyapunov exponent do not seem to have square root behavior at endpoints of gaps. The rate of convergence to the rotation number and the Lyapunov exponent in the nonuniformly hyperbolic case is also seen to be different from the reducible case.

Ключевые слова: quasi-periodic Schrödinger operators, quasi-periodic cocycles and skew-products, spectral gaps, resonance tongues, rotation number, Lyapunov exponent, numerical explorations.

MSC: 37B55, 35J10

Поступила в редакцию: 22.04.2010
Принята в печать: 06.07.2010

Язык публикации: английский

DOI: 10.1134/S1560354710520047



Реферативные базы данных:


© МИАН, 2024