RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2011, том 16, выпуск 1-2, страницы 104–116 (Mi rcd430)

Эта публикация цитируется в 41 статьях

Hamiltonicity and integrability of the Suslov problem

Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev

Institute of Computer Science, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia

Аннотация: The Hamiltonian representation and integrability of the nonholonomic Suslov problem and its generalization suggested by S. A. Chaplygin are considered. This subject is important for understanding the qualitative features of the dynamics of this system, being in particular related to a nontrivial asymptotic behavior (i. e., to a certain scattering problem). A general approach based on studying a hierarchy in the dynamical behavior of nonholonomic systems is developed.

Ключевые слова: Hamiltonian system, Poisson bracket, nonholonomic constraint, invariant measure, integrability.

MSC: 34D20, 70E40, 37J35

Поступила в редакцию: 09.10.2010
Принята в печать: 30.11.2010

Язык публикации: английский

DOI: 10.1134/S1560354711010035



Реферативные базы данных:


© МИАН, 2024