RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2011, том 16, выпуск 3-4, страницы 290–310 (Mi rcd439)

Nonlinear Evolution Equations and Hyperelliptic Covers of Elliptic Curves

A. Treibich

Investigador PEDECIBA, Centro de Matemática, Universidad de la República, Montevideo, Uruguay

Аннотация: This paper is a further contribution to the study of exact solutions to KP, KdV, sine-Gordon, 1D Toda and nonlinear Schrodinger equations. We will be uniquely concerned with algebro-geometric solutions, doubly periodic in one variable. According to (so-called) Its-Matveev's formulae, the Jacobians of the corresponding spectral curves must contain an elliptic curve X, satisfying suitable geometric properties. It turns out that the latter curves are in fact contained in a particular algebraic surface $S\perp$, projecting onto a rational surface $\widetilde S$. Moreover, all spectral curves project onto a rational curve inside $\widetilde S$. We are thus led to study all rational curves of $\widetilde S$, having suitable numerical equivalence classes. At last we obtain $d\,$-$\,1$-dimensional of spectral curves, of arbitrary high genus, giving rise to KdV solutions doubly periodic with respect to the $d$-th KdV flow ($d\geq 1$). Analogous results are presented, without proof, for the 1D Toda, NL Schrodinger an sine-Gordon equation.

Ключевые слова: elliptic and hyperelliptic curves, Jacobian variety, ruled and rational surfaces, exceptional curve, elliptic soliton.

MSC: 14E05, 14H30, 14H40, 14H55, 14H70, 14H81, 14C20, 35C08, 35Q51, 35Q53, 35Q55, 37K20

Поступила в редакцию: 04.03.2010
Принята в печать: 26.08.2010

Язык публикации: английский

DOI: 10.1134/S1560354711030063



Реферативные базы данных:


© МИАН, 2024