RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2011, том 16, выпуск 5, страницы 443–464 (Mi rcd446)

Эта публикация цитируется в 55 статьях

Hamiltonization of Nonholonomic Systems in the Neighborhood of Invariant Manifolds

A.V. Bolsinova, A.V. Borisovb, I. S. Mamaevb

a School of Mathematics, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom
b Institute of Computer Science, Udmurt State University, Universitetskaya 1, Izhevsk, 426034, Russia

Аннотация: The problem of Hamiltonization of nonholonomic systems, both integrable and non-integrable, is considered. This question is important in the qualitative analysis of such systems and it enables one to determine possible dynamical effects. The first part of the paper is devoted to representing integrable systems in a conformally Hamiltonian form. In the second part, the existence of a conformally Hamiltonian representation in a neighborhood of a periodic solution is proved for an arbitrary (including integrable) system preserving an invariant measure. Throughout the paper, general constructions are illustrated by examples in nonholonomic mechanics.

Ключевые слова: conformally Hamiltonian system, nonholonomic system, invariant measure, periodic trajectory, invariant torus, integrable system.

MSC: 37Jxx

Поступила в редакцию: 17.12.2010
Принята в печать: 12.03.2011

Язык публикации: английский

DOI: 10.1134/S1560354711050030



Реферативные базы данных:


© МИАН, 2024