Аннотация:
A time-periodic one-degree-of-freedom system is investigated. The system is assumed to have an equilibrium point in the neighborhood of which the Hamiltonian is represented as a convergent series. This series does not contain any second-degree terms, while the terms up to some finite degree $l$ do not depend explicitly on time. An algorithm for constructing a canonical transformation is proposed that simplifies the structure of the Hamiltonian to terms of degree $l$ inclusive.
As an application, a special case is considered when the expansion of the Hamiltonian begins with third-degree terms. For this case, sufficient conditions for instability of the equilibrium are obtained depending on the forms of the fourth and fifth degrees.