RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2011, том 16, выпуск 5, страницы 536–549 (Mi rcd468)

Эта публикация цитируется в 3 статьях

Statistical Irreversibility of the Kac Reversible Circular Model

Valery V. Kozlov

V.A. Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Аннотация: The Kac circular model is a discrete dynamical system which has the property of recurrence and reversibility. Within the framework of this model M.Kac formulated necessary conditions for irreversibility over "short" time intervals to take place and demonstrated Boltzmann’s most important exploration methods and ideas, outlining their advantages and limitations. We study the circular model within the realm of the theory of Gibbs ensembles and offer a new approach to a rigorous proof of the "zeroth" law of thermodynamics based on the analysis of weak convergence of probability distributions.

Ключевые слова: reversibility, stochastic equilibrium, weak convergence.

MSC: 37A60

Поступила в редакцию: 29.10.2010
Принята в печать: 04.12.2010

Язык публикации: английский

DOI: 10.1134/S1560354711050091



Реферативные базы данных:


© МИАН, 2024