RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2015, том 20, выпуск 3, страницы 345–382 (Mi rcd47)

Эта публикация цитируется в 29 статьях

Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-dimensional Models

Sergey P. Kuznetsov

Kotel’nikov’s Institute of Radio Engineering and Electronics of RAS, Saratov Branch, ul. Zelenaya 38, Saratov, 410019 Russia

Аннотация: Results are reviewed concerning the planar problem of a plate falling in a resisting medium studied with models based on ordinary differential equations for a small number of dynamical variables. A unified model is introduced to conduct a comparative analysis of the dynamical behaviors of models of Kozlov, Tanabe–Kaneko, Belmonte–Eisenberg–Moses and Andersen–Pesavento–Wang using common dimensionless variables and parameters. It is shown that the overall structure of the parameter spaces for the different models manifests certain similarities caused by the same inherent symmetry and by the universal nature of the phenomena involved in nonlinear dynamics (fixed points, limit cycles, attractors, and bifurcations).

Ключевые слова: body motion in a fluid, oscillations, autorotation, flutter, attractor, bifurcation, chaos, Lyapunov exponent.

MSC: 34C15, 76D99, 37E99

Поступила в редакцию: 22.11.2014

Язык публикации: английский

DOI: 10.1134/S1560354715030090



Реферативные базы данных:


© МИАН, 2024