RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2019, том 24, выпуск 3, страницы 266–280 (Mi rcd477)

Эта публикация цитируется в 5 статьях

A Note about Integrable Systems on Low-dimensional Lie Groups and Lie Algebras

Alexey Bolsinovab, Jinrong Baob

a Faculty of Mechanics and Mathematics, Moscow State University, 11992 Russia
b School of Mathematics, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom

Аннотация: The goal of the paper is to explain why any left-invariant Hamiltonian system on (the cotangent bundle of) a $3$-dimensonal Lie group $G$ is Liouville integrable. We derive this property from the fact that the coadjoint orbits of $G$ are two-dimensional so that the integrability of left-invariant systems is a common property of all such groups regardless their dimension.
We also give normal forms for left-invariant Riemannian and sub-Riemannian metrics on $3$-dimensional Lie groups focusing on the case of solvable groups, as the cases of $SO(3)$ and $SL(2)$ have been already extensively studied. Our description is explicit and is given in global coordinates on $G$ which allows one to easily obtain parametric equations of geodesics in quadratures.

Ключевые слова: Integrable systems, Lie groups, geodesic flow, left-invariant metric, sub-Riemannian structure.

MSC: 37J35, 53B50, 70H06, 70S10

Поступила в редакцию: 17.09.2018
Принята в печать: 20.10.2018

Язык публикации: английский

DOI: 10.1134/S156035471903002X



Реферативные базы данных:


© МИАН, 2024